
AMG Preconditioners based on Parallel Hybrid
Coarsening and Multi-objective Graph Matching

Pasqua D’Ambra
Institute for Applied Computing “M. Picone” (IAC)

National Research Council (CNR)
Napoli, Italy

0000-0003-2047-4986

Fabio Durastante
Department of Mathematics

University of Pisa
Pisa, Italy

0000-0002-1412-8289

S M Ferdous
Physical and Computational Sciences
Pacific Northwest National Laboratory

Richland, WA, USA

0000-0002-2323-4753

Salvatore Filippone
Dept. of Civil and Computer Engineering

University of Rome Tor-Vergata
Rome, Italy

0000-0002-5859-7538

Mahantesh Halappanavar
Physical and Computational Sciences
Pacific Northwest National Laboratory

Richland, WA, USA

0000-0002-2323-4753

Alex Pothen
Computer Science Department

Purdue University
West Lafayette, IN, USA

0000-0002-3421-3325

Abstract—We describe preliminary results from a multi-
objective graph matching algorithm, in the coarsening step of an
aggregation-based Algebraic MultiGrid (AMG) preconditioner,
for solving large and sparse linear systems of equations on high-
end parallel computers. We have two objectives. First, we wish
to improve the convergence behavior of the AMG method when
applied to highly anisotropic problems. Second, we wish to extend
the parallel package PSCToolkit to exploit multi-threaded
parallelism at the node level on multi-core processors. Our
matching proposal balances the need to simultaneously compute
high weights and large cardinalities by a new formulation of
the weighted matching problem combining both these objectives
using a parameter 𝜆. We compute the matching by a parallel
2/3− 𝜀-approximation algorithm for maximum weight matchings.
Results with the new matching algorithm show that for a suitable
choice of the parameter 𝜆 we compute effective preconditioners
in the presence of anisotropy, i.e., smaller solve times, setup times,
iterations counts, and operator complexity.

Index Terms—Sparse solvers, AMG, Matching, MPI, OpenMP,
Scalability

I. INTRODUCTION

We describe an improved iterative method to solve a large

linear system of the form 𝐴x = b, where 𝐴 ∈ R𝑛×𝑛 is a

sparse matrix, i.e., a matrix with 𝑂 (𝑛) nonzero entries and
x, b ∈ R𝑛, when 𝐴 is obtained from an anisotropic problem,

on current pre-exascale parallel computers. More precisely, we

describe a new bi-objective matching algorithm to compute the

coarsening step of an aggregation-based Algebraic Multigrid

(AMG) preconditioner to accelerate the convergence of a

Krylov-type linear solver [1]. A fast and potentially parallel

approximation algorithm is used to compute the matching.

The new matching balances the need to obtain large weights

as well as high cardinalities in the weighted adjacency graph of

the system matrix; this is to ensure that the AMG preconditioner

is effective in reducing solve time and memory overhead for

increasing numbers of parallel cores while leaving at each

level as few unmatched vertices as possible. The final AMG

shows improved node-level efficiency and scalability when

compared with other available parallel iterative linear solvers

on linear systems with up to 192 × 106 unknowns on up to
1024 computing cores of the Marconi 100 Supercomputer.
In Section II, we describe the AMG preconditioner and

the main challenges to improving the quality and paral-

lel efficiency of its setup. In Section III, we formulate

the LAMBDA MATCHING to compute a bi-objective graph

matching and demonstrate its pareto optimality. Furthermore,
we describe an approximation algorithm for solving the

LAMBDA MATCHING problem. In Section IV, we present our

approach in applying the approximated LAMBDA MATCHING

for parallel hybrid shared/distributed-memory implementation

of the AMG setup. Section V includes a discussion of the

preliminary results obtained on benchmark test cases arising

from anisotropic diffusion problems.

II. AMG PRECONDITIONER BASED ON GRAPH MATCHING

The Algebraic MultiGrid method considered here applies to

the case of a symmetric and positive-definite matrix 𝐴, and is
a general stationary iterative method:

x(𝑘) = x(𝑘−1) + 𝐵(𝑏 − 𝐴x(𝑘−1)), 𝑘 ≥ 1 for x(0) ∈ R𝑛,

where 𝐵 ∈ R𝑛×𝑛 is defined recursively as follows. Let 𝐴𝑙 be
a hierarchy of coarse matrices computed by the triple-matrix

Galerkin product:

𝐴𝑙+1 = 𝑃𝑇𝑙 𝐴𝑙𝑃𝑙 , 𝑙 = 0, . . . , ℓ − 1, (1)

with 𝐴0 = 𝐴 (the fine matrix) and 𝑃𝑙 a sequence of prolongation
matrices of size 𝑛𝑙 × 𝑛𝑙+1, with 𝑛𝑙+1 < 𝑛𝑙 and 𝑛0 = 𝑛. Here ℓ
is the number of hierarchy levels. Let 𝑀𝑙 be an 𝐴-convergent
smoother for 𝐴𝑙 , i.e., an operator for which ‖𝐼𝑙−𝑀

−1
𝑙 𝐴𝑙 ‖𝐴𝑙 < 1,

where 𝐼𝑙 is the identity matrix of size 𝑛𝑙 , and ‖ · ‖𝐴𝑙 indicates

the weighted 𝐴𝑙 norm. The preconditioner matrix 𝐵 for the
𝑉 (1, 1) cycle, where one sweep of pre– and post-smoothing
step is applied, is the linear operator corresponding to the

59

2023 31st Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP)

2377-5750/23/$31.00 ©2023 IEEE
DOI 10.1109/PDP59025.2023.00017

20
23

 3
1s

t E
ur

om
ic

ro
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 P
ar

al
le

l,
Di

st
rib

ut
ed

 a
nd

 N
et

w
or

k-
Ba

se
d

Pr
oc

es
sin

g
(P

DP
) |

 9
79

-8
-3

50
3-

37
63

-1
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
PD

P5
90

25
.2

02
3.

00
01

7

Authorized licensed use limited to: Purdue University. Downloaded on March 10,2024 at 15:28:54 UTC from IEEE Xplore. Restrictions apply.

multiplicative composition of the following error propagation

matrices:

𝐼 − 𝐵𝑙𝐴𝑙 =(𝐼 − (𝑀𝑙)
−𝑇 𝐴𝑙) (𝐼 − 𝑃𝑙𝐵𝑙+1 (𝑃𝑙)

𝑇 𝐴𝑙)

(𝐼 − 𝑀−1
𝑙 𝐴𝑙) ∀𝑙 < ℓ,

assuming that 𝐵ℓ ≈ 𝐴−1
ℓ is an approximation of the inverse of

the coarsest-level matrix.

Our AMG method relies on an aggregation strategy for the

setup of the coarse matrices: at each level it uses disjoint

aggregates of unknowns to define the sequence of prolongation

and coarse matrices, and exploits the properties of maximum

weight matching in undirected edge-weighted graphs, as

detailed in [2], [3]. Parallel versions of the method have been

recently proposed [4], [5] for hybrid architectures embedding

Graphics Processing Units (GPUs) both in a single node and

in multiple node settings; they benefit from efficient parallel

algorithms for the approximate computation of a maximum

weight matching in a graph, with implementations available as

source code [6], [7].

In this paper, we extend our previous work to improve

the quality and parallel efficiency of the AMG setup. More

specifically, we pursue a twofold objective: on the one hand, we

wish to improve the convergence behavior of our AMG method

when applied as a preconditioner of a Krylov solver for highly

anisotropic problems, while on the other hand, we wish to

extend our previous parallel implementations to exploit multi-

threaded parallelism at the node level on multi-core processors

(both in the setup and in the application of the AMG method).

A. Prolongators from compatible weighted matching

An earlier version of the AMG method [2], [3] used a
coarsening based on compatible weighted matching for setup
of the AMG hierarchy (1). This is a recursive procedure starting

from the weighted adjacency (undirected) graph 𝐺 = (V, E, C)
associated with the sparse matrix 𝐴, where the vertex set V
consists of the row/column indices of 𝐴 and the edge set E
corresponds to the index pairs (𝑖, 𝑗) of the nonzero entries in 𝐴.
We consider a weight matrix 𝐶 computed from the matrix 𝐴
and an arbitrary vector w, as follows:

(𝐶)𝑖, 𝑗 = 𝑐𝑖, 𝑗 = 1 −
2𝑎𝑖, 𝑗𝑤𝑖𝑤 𝑗

𝑎𝑖,𝑖𝑤
2
𝑖 + 𝑎 𝑗 , 𝑗𝑤

2
𝑗

, (2)

where 𝑎𝑖, 𝑗 are the entries of 𝐴 and w = (𝑤𝑖)
𝑛
𝑖=1 is a given

vector.

A matching M in a graph 𝐺 is a subset of edges such that

no two edges are incident on the same vertex. By applying a

matching algorithm to the adjacency graph 𝐺 of 𝐴, we can
define the aggregates {G 𝑗 }

𝑛𝑝
𝑗=1 for the row/column indices I of

matrix 𝐴 to consist of matched pairs of indices, where 𝑛𝑝 =
|M| is the cardinality of the graph matching M. Equivalently,

we are decomposing the index set as

I =
𝑛𝑝⋃
𝑖=1

G𝑖 , G𝑖 ∩ G 𝑗 = ∅ if 𝑖 ≠ 𝑗 .

A perfect matching is one in which all rows and columns
of 𝐴 (vertices of 𝐺) are matched. In the case of a non-
perfect matching (a graph may not have a perfect matching, or

the algorithm may have computed a matching with less than

maximum cardinality) we will have unmatched vertices. In this
case, each unmatched vertex corresponds to a singleton 𝐺𝑖;
we denote by 𝑛𝑠 the number of unmatched vertices. For each
edge 𝑒 = (𝑢, 𝑣) ∈ M, we can identify the vectors:

w𝑒 =
1√

𝑤2
𝑖 + 𝑤2

𝑗

[
𝑤𝑖
𝑤 𝑗

]
.

Given the above vectors, and assuming an ordering of the in-

dices that moves all the unknowns corresponding to unmatched

vertices at the bottom, we can formally define a prolongator:

𝑃 =

[
�̃� 𝑂
𝑂 𝑊

]
= [p1, . . . , p𝑛𝑐], (3)

where �̃� = blockdiag(𝑤𝑒1 , . . . , 𝑤𝑒𝑛𝑝), 𝑊 = diag(𝑤𝑙/|𝑤𝑙 |), 𝑙 =
1, . . . , 𝑛𝑠, and the number of vertices at the coarse level is
𝑛𝑐 = 𝑛𝑝 + 𝑛𝑠 .
The matrix 𝑃 we have just built is a piecewise constant

interpolation operator whose range includes, by construction,

the vector w. In large-scale applications we generally combine
multiple steps of the basic pairwise aggregation by computing

the product of 𝑚 consecutive prolongators of type (3), to obtain
a more aggressive coarsening; the resulting aggregates merge

multiple pairs and have size 2𝑚, thus producing a coarsening
ratio at each level equal to 𝑛/𝑛𝑐 ≈ 2𝑚.
A way of improving this strategy is represented by the use

of a smoothed aggregation procedure: we post-process the
prolongator 𝑃 obtained from the matching strategy, to obtain
an operator with higher regularity than the piecewise constant.

At level 𝑙 we perform such an operation by applying a weighted
Jacobi smoother to the matrix 𝑃𝑙

𝑃𝑠𝑙 = (𝐼 − 𝜔𝐷−1
𝑙 𝐴𝑙)𝑃𝑙 , (4)

where 𝐴𝑙 is the coarse matrix of the corresponding level,
𝐷𝑙 denotes its diagonal, and 𝜔 is a damping parameter

approximating the spectral radius of 𝐷−1
𝑙 𝐴𝑙 .

A quantitative measure of the memory footprint of the

multigrid hierarchies and an estimated cost of the application

of a V-cycle is given by the operator complexity

opc =

∑ℓ−1
𝑙=0 nnz(𝐴𝑙)
nnz(𝐴0)

> 1,

that gives a measure of the arithmetic intensity of the matrix-

vector and matrix-matrix products involved in building and

applying the multigrid algorithm.

III. THE MULTI-OBJECTIVE MATCHING STRATEGY

The original version of the coarsening based on compatible
weighted matching used a maximum product matching in the
weighted graph 𝐺, i.e., M = arg maxM′

∏
(𝑖, 𝑗) ∈M′ 𝑐𝑖 𝑗 , where

M′ denotes a matching in 𝐺. This idea has been inspired by the
so-called compatible relaxation principle, originally introduced

60

Authorized licensed use limited to: Purdue University. Downloaded on March 10,2024 at 15:28:54 UTC from IEEE Xplore. Restrictions apply.

in [8] as a general way to obtain good-quality coarsening

in AMG. A simple logarithmic weight transformation allows

us to formulate the computation of a maximum product

matching in terms of the maximum weight sum matching,

that is, a matching that maximizes the sum of the weights

of the edges in the matching. An exact algorithm, i.e., an

algorithm that computes the maximum value of the objective

function, is impractical for very large graphs with billions of

edges; therefore, parallel approximation algorithms have been

designed [9]. The PSCToolkit software framework1 [10]
relies on a parallel distributed-memory algorithm, included

in the MATCHBOX-P software library [6], which computes a
1/2-approximate matching, i.e., a matching which realizes at
least half of the optimal weight for all input graphs.

While the above approximation algorithm works well for

isotropic problems (see [5]), in the case of anisotropic problems

it is often unable to detect the direction of the strong coupling

among unknowns in the first level of the AMG hierarchy, cre-

ating a large number of unmatched nodes and thus hampering

the compression properties of the coarsening strategy; the bad

quality of the aggregates affects negatively the convergence

properties of the AMG preconditioner.

Is it possible to attain high cardinalities in the matching
while also obtaining large weights so that the aggregation
has better quality, and the AMG algorithm has better conver-
gence properties? We demonstrate that the answer is yes for
anisotropic problems, by considering results from experiments

with a parallel bi-objective approximate algorithm for matching.

A. Lambda matching

Consider a graph 𝐺 (V, E, C), whereV and E are the vertex

and edge sets respectively, and C is a positive weight function

defined on the edges. We denote the number of vertices |V| by

𝑛 and the number of edges |E | by 𝑚 throughout this section.

The classic formulation of maximum weight matching

maximizes only the weight function and does not consider the

cardinality of the matching. We can reformulate the matching

problem to account for the cardinality by introducing a non-

negative parameter 𝜆, and modifying the formulation to

max
∑
𝑒∈E

C(𝑒)𝑥(𝑒) + 𝜆
∑
𝑒∈E

𝑥(𝑒) (5)

subject to
∑

𝑒∈ 𝛿 (𝑣)

𝑥(𝑒) ≤ 1,∀𝑣 ∈ 𝑉, and 𝑥(𝑒) ∈ {0, 1}.

Here 𝛿(𝑣) is the set of edges incident on vertex 𝑣 and 𝑥 is
the characteristic vector of the matching. The formulation (5),

called LAMBDA MATCHING, has two terms in its objective

function: the first term maximizes the weight of matching,

while the second term maximizes its cardinality. The parameter

𝜆 ≥ 0 incorporates the trade-off between these two objectives.
If 𝜆 = 0, the algorithm produces the classic maximum weight
matching. It is intuitive that increasing 𝜆 would also increase
the cardinality of the matching and possibly decrease the weight

of the matching in terms of the original edge weights.

1See https://psctoolkit.github.io for the code.

B. Pareto Optimality of Weight and Cardinality

Let M𝜆
∗ be an optimum solution (i.e. a matching), and 𝑊𝜆

be the optimum objective value of 5. Let also 𝑊0 be the total
weight of a matching (say, M𝜆) on the original weight of

the graph, i.e., 𝑊0 (𝑀
𝜆) =

∑
𝑒∈M𝜆 C(𝑒). To show the Pareto

optimality between weight and cardinality, we have to prove

that:

1) the weight 𝑊0 (M
𝜆
∗) is largest among matchings with

cardinality |M𝜆
∗ |, and

2) the cardinality of M𝜆
∗ is the highest among matchings

with weight 𝑊0 (M
𝜆
∗).

Note that if 𝜆 = 0, the second condition may not always
be satisfied. For example, consider a path graph with four

vertices {𝑎, 𝑏, 𝑐, 𝑑} with edge weights (𝑎, 𝑏) = (𝑐, 𝑑) = 1 and
(𝑏, 𝑐) = 2. This has two maximum weight matchings, namely
(𝑎, 𝑏), (𝑐, 𝑑) and (𝑏, 𝑐). For 𝜆 = 0 the LAMBDA MATCHING
could return the latter matching, thus violating the second

condition.

Lemma 1: For 𝜆 > 0, the matching computed by solving
LAMBDA MATCHING is Pareto optimal w.r.t weight and car-

dinality.

Proof: (Proof of weight:) By contradiction. Suppose there
exists another matchingM𝜆

1 with |M
𝜆
1 | = |M

𝜆 | but𝑊0 (M
𝜆
1) >

𝑊0 (M
𝜆). Then we have𝑊𝜆 (M

𝜆
1) > 𝑊𝜆 (M

𝜆), andM𝜆
∗ cannot

be an optimum matching.

(Proof of cardinality:) By contradiction. Suppose we have a

matching M𝜆
1 with weight 𝑊0 (M

𝜆
1) = 𝑊0 (M

𝜆
∗) but |M

1
𝜆 | >

|M𝜆
∗ |. As 𝜆 > 0, we see 𝜆 |M1

𝜆 | > 𝜆 |M𝜆
∗ |. Again 𝑊𝜆 (M

𝜆
1) >

𝑊𝜆 (M
𝜆
∗), which is a contradiction.

C. Choosing a suitable value of 𝜆

Given a matching M of a graph, a path or cycle 𝑃 is

called alternating if it consists of edges chosen alternatively
from M and E \M. An augmenting path with respect to the
current matching is an alternating path that begins and ends

with unmatched vertices; by switching matching edges to non-

matching edges and vice versa we can increase the cardinality
of the matching. Now we can develop some guiding principles

for choosing the value of 𝜆.

Lemma 2: Let 𝛾 be the maximum weight and 𝛿 be the mini-
mum weight of the edges in 𝐺. If 𝜆 = max{ (𝑘−1)

2 𝛾− (𝑘+1)
2 𝛿, 0}+

𝜀, where 𝜀 > 0, thenM𝜆
∗ obtained from LAMBDA MATCHING

has the maximum weight among all matchings such that there

exists no augmenting path of length 𝑘 (≥ 3) or less w.r.t the
matching.

Proof: Due to space limitations, we provide a sketch of the
proof. Suppose choosing 𝜆 as mentioned in the lemma does not
lead to a maximum weight matching with the augmenting path

length guarantee. Then there is an augmenting path, say 𝑃, of
length 𝑘 w.r.t to the optimal matchingM𝜆

∗ . In 𝑃, there are 𝑘−1
2

matched edges and 𝑘+1
2 unmatched edges. Let Δ be the change

of weight if we augment along 𝑃. The proof is completed by
showing that Δ ≥ 0, which leads to a contradiction since we
began with a maximum weight matching.

61

Authorized licensed use limited to: Purdue University. Downloaded on March 10,2024 at 15:28:54 UTC from IEEE Xplore. Restrictions apply.

D. 2/3 − 𝜀 Lambda matching algorithm

The theoretical analysis of LAMBDA MATCHING technique

is tailored to the optimal solution of the corresponding matching

problem. The optimal algorithms are tedious to implement due

to the complex data structures needed to maintain blossoms

(odd cycles in the graph with the maximum number of matching

edges on the cycle) efficiently, and have little to no concurrency.

For the large problems that we need to solve during the

setup of AMG hierarchies, it is of the utmost importance

to compute matchings exploiting the large memories available

on parallel computers; the matchings must also be computed

fast. In practice, approximation algorithms compute matchings

with weights quite close to the optimal matchings; see the

survey article [9] for a thorough discussion of the advantages

of approximate matchings over exact matchings. For these

reasons, we choose to employ approximate weighted matching

in this application.

A weight increasing path (cycle) is an alternating path (cycle)
with equal numbers of matching and non-matching edges such

that the sum of the weights of the non-matching edges is

greater than the sum of the weights of the matching edges.

By switching matching and non-matching edges on the path

(cycle), we can increase the weight of the current matching.

An augmentation is an augmenting path or a weight increasing
path or cycle; if 𝑃 is an augmentation, then M ⊕ 𝑃 = (M \

𝑃) ∪ (𝑃 \M) is also a matching. The gain of an alternating
path or cycle 𝑃 is 𝑔(𝑃) = 𝑊 (𝑃\M)−𝑊 (𝑃∩M). For 𝑘 ≥ 1, a
𝑘-augmentation is an augmentation containing exactly 𝑘 edges
not in M.

A matching that does not admit any positive gain 𝑙-
augmentation, where 1 ≤ 𝑙 ≤ 𝑘 , is 1 − 1/(𝑘 + 1)-approximate
(see a proof in [9]). Pettie and Sanders [11] extended this

result by introducing vertex-disjoint 2-augmentations. Using
these they developed a 2/3 − 𝜀 approximate randomized
algorithm that runs in 𝑂 (𝑚 log 1

𝜀) time. This iterative algorithm

works by choosing a random vertex 𝑣 and augmenting the
current matching with the largest gain 1- and 2-augmentations
centered at 𝑣 in each iteration. A variant of this random

algorithm was implemented by Maue and Sanders [12]. This

new algorithm works in phases, where in each phase, the

algorithm successively selects all the vertices in some random

order, and the current matching is augmented with a highest-

gain 2-augmentation centered at the selected vertex. Berge and
Manne have a parallel multi-threaded implementation [13] of

this new algorithm, which we have used with modifications as

a building block for setting up the AMG hierarchies.

IV. PARALLEL COARSENING BASED ON

LAMBDA MATCHING

In extending AMG4PSBLAS software for using the parallel
multi-threaded version of the LAMBDA MATCHING discussed

in the above sections, we applied a decoupled approach for
running in a hybrid shared/distributed-memory programming

model based on the OpenMP and MPI libraries. This means

that every MPI rank applies the matching to the local sub-graph

corresponding to the local matrix, ignoring edges which involve

graph nodes owned by different MPI ranks. We observe that this

decoupled approach introduces a further approximation in the

parallel hybrid AMG setup, indeed the union of local matchings

on local subgraphs is in general not a (2/3 − 𝜀)-approximate
matching for the global graph. The setup of the prolongator

in (3) and the corresponding restrictor is local on each MPI

rank, but the triple matrix Galerkin products to compute the

resulting coarse matrices involve data communications among

MPI ranks.

Using the parallel matching algorithm, it is possible to run

each MPI task with multiple threads, thus speeding up the

setup phase, even though it is not fully parallelized at this

time because of improvements needed in the parallel sparse

matrix by sparse matrix product kernel; a fully multi-threaded

version is currently under development. The current version of

our AMG software provides OpenMP parallelization for the

main vector operations and sparse matrix by vector products,

so that the solve phase can also run in a multi-threading setting

when using highly parallel smoothers. This is the case of

versions of the weighted-Jacobi and block-Jacobi methods

with approximate inverses on diagonal blocks, as discussed

in [4], [5]. We observe that this hybrid implementation of the

AMG setup would also be useful in the current CUDA-enabled

version of the library; indeed, the solve phase runs on the

CUDA-enabled device, whilst the setup phase can be sped up

by employing OpenMP support on multi-core CPUs commonly

found in GPU-enabled compute nodes.

V. NUMERICAL EXPERIMENTS

All the experiments are performed using a Poisson bench-

mark with axial anisotropy: we solve the boundary value

problem {
−∇(𝐾∇𝑢) = 𝑓 , ∈ Ω

𝑢 ≡ 0, ∈ 𝜕Ω,
(6)

in 2D and 3D. We consider two cases. In the first case,

𝐾 = diag(𝑘𝑖𝑖) is a diagonal diffusivity tensor. For the second
case, we consider only a 2D problem with 𝐾 = diag([1, 𝛿])
rotated by an angle 𝜃. Here Ω is the unit square or the

unit cube for the axial anisotropies, and the [−1, 1] × [−1, 1]
square for the rotated ones. We use the standard second-order

finite-difference scheme to discretize the problem, obtaining

well-known matrices with 5 and 7 diagonals in 2D and 3D,
respectively for the axially oriented case, while we use the

Q1-Lagrangian elements on a regular Cartesian grid for the
rotated anisotropy.

In the following discussion, we will focus on the two major

steps in the solution process. On the one hand we consider

the setup time of multigrid hierarchies; this comprises the
construction of the auxiliary graph, the graph matching, the

construction of the coarse matrix hierarchy together with the

projection/restriction operators, and of the smoothers at each

level of the hierarchy. On the other hand we consider the solve
time, that is, the time necessary to apply a Krylov iteration using
the multigrid hierarchy as a preconditioner. In the application

62

Authorized licensed use limited to: Purdue University. Downloaded on March 10,2024 at 15:28:54 UTC from IEEE Xplore. Restrictions apply.

of sparse linear solvers it is usually the case that a single setup

phase is reused over many applications/linear system solutions.

A. The effect of the 𝜆 parameter

In this section, we show results when the Poisson equation

in 2D is solved in a sequential setting. We use axial anisotropy

corresponding to two diffusivity tensors 𝐾1 = diag(1000, 1)
and 𝐾2 = diag(1, 1000), and analyze the impact of the 𝜆
value on the aggregates generated by the coarsening based on
compatible weighted matching. To achieve this we consider a
small number of discretization mesh points, 10 per direction
for a total of 𝑛 = 100 unknowns (dofs, degrees of freedom).
In Table I we show the main parameters of the 2-level AMG

hierarchy, i.e., operator complexity (opc) and coarsening ratio

cr = 𝑛/𝑛𝑐, where 𝑛 is the dimension of the original matrix
and 𝑛𝑐 is the dimension of the coarse-level matrix; aggregates
of size at most 2 are built and no smoothing is applied to the
resulting prolongator. We also report the number of iterations,

nit, of the preconditioned Conjugate Gradient (PCG) method

for solving the system, when the AMG hierarchy is applied

as a V-cycle with one iteration of the Gauss-Seidel method

as pre-/post-smoother and LU factorization as coarsest solver.

The linear solver is stopped when a relative residual norm is

less than 10−6.
In our experiments we varied the 𝜆 value in the objective

function, following the discussion in Section III-C for optimal

matchings, with the augmentation length 𝑘 = 3. We chose 𝜆
by using the following formula, which depends on an input

real parameter 𝑠:

𝜆 =

⎧⎪⎪⎨⎪⎪⎩
𝑠𝜀 + (1 − 𝑠)Λ if 𝑠 ∈]0, 1] ∧ Λ > 0;
𝑠 if 𝑠 = 0 ∨ 𝑠 > 1;
𝜀 otherwise,

(7)

where 𝜀 is the machine precision and

Λ = (max(max(𝑐𝑖 𝑗) − 2.0 min(𝑐𝑖 𝑗), 0.0)) + 𝜀,

with 𝑐𝑖 𝑗 denoting graph edge weights as in (2) after a
logarithmic transformation of the weights. As input parameter,

we used values of 𝑠 = 𝑖ℎ ∈ [0, 2], 𝑖 = 0, 1 . . ., with ℎ = 0.25.
We note that the value 𝑠 = 0 corresponds to 𝜆 = 0, so the
resulting matching is a 2/3 − 𝜖-approximate matching in the
graph with no cardinality considerations. If 𝑠 ∈]0, 1], we have
𝜆 ∈ [𝜀,Λ], and 𝜆 = 𝑠 if 𝑠 > 1.
We observed similar convergence behavior of the solver for

all values of input 𝑠 ∈ [0, 1], while, when we fix 𝑠 = 𝜆 > 1
we observed worse behavior for all values except for 𝜆 =
1.75, where better coarsening parameters are observed for both
diffusivity tensors, and better convergence behavior is seen for

tensor 𝐾1. In Table I we show parameters for three different
representative values of 𝜆, as obtained by (7). In the case of
𝐾 = 𝐾1 with 𝜆 = 1.75, we observe that the resulting AMG
hierarchy requires a smaller number of iterations in the solve

phase, even though it has a smaller operator complexity. In the

case of 𝐾 = 𝐾2, for 𝜆 = 1.75, we observe the smallest operator
complexity and the best coarsening ratio, which corresponds

to a cheaper hierarchy, although the number of iterations in

TABLE I: AMG parameters and number of iterations for several

values of 𝜆 in the objective function (5).

𝐾 = 𝐾1
𝜆 opc cr nit
0 1.552 1.923 9
1.25 1.559 1.961 10
1.75 1.489 1.961 7

𝐾 = 𝐾2
𝜆 opc cr nit
0 1.589 1.887 6
1.25 1.604 1.923 7
1.75 1.489 1.961 7

the solve phase does not change with respect to the case of

𝜆 = 1.25. The smallest number of iterations (only one iteration
fewer) is observed when 𝜆 = 0, although for that choice we
observe the smallest coarsening ratio.

B. Weak scaling analysis

The experiments presented here and in the next section

were performed on some nodes of the CINECA Marconi 100

machine, equipped with 2×16 cores IBM POWER9 16C AC922
CPUs, 256GB of RAM per node, and Dual-rail Mellanox

EDR Infiniband connection network. Taking into account this

computing unit layout, we perform a weak scaling analysis by

associating 16 threads with each MPI process while assigning

∼ 3M dofs to each MPI task and using from 1 to 64 MPI tasks

for a total of 1024 computing cores and 192M total dofs.

We perform a weak scalability analysis on the model problem

(6) in 3D, with an axial anisotropy along 𝑧 corresponding to
a diagonal diffusivity tensor 𝐾 = diag(1, 1, 1000). We use the
PCG method coupled with a V-cycle where four iterations

of ℓ1-Jacobi are used as pre- and post-smoother. This is a
modification of the highly parallel weighted Jacobi method in

which the weights are computed by looking at the ℓ1-norm of
the off-diagonal entries of the matrices. It usually has better

smoothing properties than the weighted Jacobi method; see, e.g.,

the discussion in [14] and the experiment in [5]. The solver on

the coarse grid is again the ℓ1-Jacobi method of which we do 30
iterations. The tentative prolongator 𝑃 is built as in (3) by using
in a recursive way the multi-objective matching discussed in

Section III and applied as described in Section IV. The formula

in (7) is applied at each new iteration of the matching algorithm

to the weighted graph associated with the current level coarse

matrix. To have a more aggressive aggregation we compose

together three consecutive prolongators, making the target size

for the aggregates equal to 8. To obtain the final prolongator
𝑃𝑠𝑙 at each level a single sweep of damped Jacobi is applied to
obtain (4). The linear solver is stopped when a relative residual

norm is less than 10−6.

Following the analysis in Section V-A, we consider three

cases: 𝜆 = 0, 𝜆 = 1.25, and 𝜆 = 1.75. First of all, in Fig. 1 we
observe that the hierarchy built employing the hybrid matching

(𝜆 = 1.75) has a lower operator complexity, as it was in the
previous case. This means that we have an effective coarsening

at each level in which fewer unmatched nodes and lower weight

matchings appear. The more evident effect is then a reduction

in the setup-time for the preconditioner with respect to the

other cases, as seen in Fig. 2. Fewer singletons means that

63

Authorized licensed use limited to: Purdue University. Downloaded on March 10,2024 at 15:28:54 UTC from IEEE Xplore. Restrictions apply.

20 21 22 23 24 25 26

3

3.5

4

Number of MPI Tasks

O
p
er
at
o
r
C
o
m
p
le
x
it
y

𝜆 = 0
𝜆 = 1.25
𝜆 = 1.75

Fig. 1: Weak scaling. Operator Complexity.

the graphs at succeeding levels are smaller; thus the matching

algorithm has fewer operations to perform and is then faster.

20 21 22 23 24 25 26
101.5

102

Number of MPI Tasks

T
im
e
fo
r
S
et
u
p
(s
) 𝜆 = 0

𝜆 = 1.25
𝜆 = 1.75

Fig. 2: Weak scaling. Setup time

Clearly, from the point of view of the problem that we want to

solve, the other requirement that we need to satisfy is the quality

of such an aggregation procedure, and we can measure it by

looking at the number of iterations needed by the PCG method

to reach a tolerance of 10−6 on the residual in Fig. 3. We

20 21 22 23 24 25 26
20

40

60

80

Number of MPI Tasks

N
u
m
b
er
o
f
It
er
at
io
n
s

𝜆 = 0
𝜆 = 1.25
𝜆 = 1.75

Fig. 3: Weak scaling. Number of iterations for the precondi-

tioned CG.

observe that reducing the number of singletons by increasing

the cardinality of the matching while simultaneously obtaining

a good weight for the matching leads to good algorithmic

scalability for the proposed preconditioner. Finally, we observe

that such good properties are reflected in the solution time

reported in Fig. 4. Here increasing cardinality in the multi-

objective matching results in an AMG preconditioner that

outperforms the original approach based on maximum weight

matching alone.

20 21 22 23 24 25 26

10

20

Number of MPI Tasks

T
im
e
fo
r
S
o
lv
e
(s
) 𝜆 = 0

𝜆 = 1.25
𝜆 = 1.75

Fig. 4: Weak scaling. Solve time

C. Strong scaling analysis

For the strong scalability analysis we consider again the

same preconditioner and application case used for the weak

scalability case in Section V-B. The total number of dofs we

use is 2883 ≈ 11𝑀 . We vary the number of MPI tasks from 2𝑘
for 𝑘 = 0, . . . , 5, and employ 16 OpenMP threads for task. With
this choice in the coarser case with 64 MPI tasks, we end up
having ≈ 185, 000 dofs per task. To evaluate the performance
of the matching algorithms we look again at the complexity of

the operator in the different cases. From Fig. 5 we observe as

before that the case with 𝜆 = 1.75 attains the smallest operator
complexity. This corresponds in turn in a smaller setup-time for

20 21 22 23 24 25

3.2

3.4

Number of MPI Tasks

O
p
er
at
o
r
C
o
m
p
le
x
it
y

𝜆 = 0
𝜆 = 1.25
𝜆 = 1.75

Fig. 5: Strong scaling. Operator complexity

the preconditioner, as shown in Fig. 6, attaining a speed up of

6.4 with 𝜆 = 1.75. The speedup is computed relative to a single
MPI task. Along with the algorithmic and scalability properties

of matching, the approximation capabilities of the multigrid

hierarchy as a preconditioner are also preserved. Indeed, we

observe a stable number of iterations for the linear PCG solver

(Fig. 7) and a corresponding solution time (Fig. 8). The parallel

algorithm attains a speedup of 13.4 for the 𝜆 = 1.75 choice,
relative to a single MPI task.

D. Node-level analysis and some comparison

In this section, we focus on the 2D version of problem (6)

with a rotated anisotropy, with 𝜃 = 18◦ and 𝜀 = 100, and
compare the obtained results with several algorithms, including

some state-of-the-art libraries through PETSc, while running

64

Authorized licensed use limited to: Purdue University. Downloaded on March 10,2024 at 15:28:54 UTC from IEEE Xplore. Restrictions apply.

20 21 22 23 24 25
101

102

Number of MPI Tasks

T
im
e
fo
r
S
et
u
p
(s
) 𝜆 = 0

𝜆 = 1.25
𝜆 = 1.75

Fig. 6: Strong scaling. Setup time

20 21 22 23 24 25

20

40

60

80

100

Number of MPI Tasks

N
u
m
b
er
o
f
It
er
at
io
n

𝜆 = 0
𝜆 = 1.25
𝜆 = 1.75

Fig. 7: Strong scaling. Number of iterations for the precondi-

tioned CG.

the example on a single node with different load balancing

between the number of OpenMP threads and MPI tasks. For

this analysis we use a single node with 48 Intel® Xeon® Gold

6238R CPUs at 2.20GHz, and we use up to 32 cores. We divide

them into either pure MPI tasks or pure OpenMP threads and

consider a weak scaling framework with around 512k dofs per

core.

The algorithms we compare are:

• LAMBDA MATCHING with 4 iterations of ℓ1-Jacobi as
smoother, a smoothed 𝑉-cycle, and MUMPS as coarse
solver. For the aggregation, we consider aggregates of

size 8. For this algorithm we test both the pure MPI task
and the pure OpenMP thread settings;

• Parmatch with 4 iterations of ℓ1-Jacobi as smoother, a
smoothed 𝑉-cycle, and MUMPS as coarse solver. For the

20 21 22 23 24 25100

101

102

Number of MPI Tasks

T
im
e
fo
r
S
o
lv
e
(s
) 𝜆 = 0

𝜆 = 1.25
𝜆 = 1.75

Fig. 8: Strong scaling. Solve time

aggregation, we consider aggregates of size 8. In this
case, they are obtained with the pure MPI version of the

Matching algorithm from [5];

• VBM with 4 iterations of ℓ1-Jacobi as smoother, a
smoothed 𝑉-cycle, and MUMPS as coarse solver. For the
aggregation procedure we use the decoupled aggregation

based on the algorithm from [15] as implemented;

and the following algorithms from Hypre and Trilinos/ML
through the PETSc interface

• Falgout the AMG preconditioner from the

Hypre/Boomeramg package using 4 iterations

of ℓ1-Jacobi as smoother, the Falgout coarsening scheme
with classical interpolation, and Gaussian-elimination as

coarse solver;

• HMIS1 the AMG preconditioner from the

Hypre/Boomeramg package using 4 iterations

of ℓ1-Jacobi as smoother, the HMIS coarsening

scheme with one level of aggressive interpolation, and

Gaussian-elimination as coarse solver;

• ML the AMG preconditioner from the Trilinos library
using as smoother 4 iterations of the combination of one
Chebyshev iteration preconditioned by a single sweep of

Jacobi, the aggregation algorithm from [15], and Gaussian-

elimination as coarse solver;

We stress that for PETSc there is no available OpenMP version

with optimized performances2, thus to avoid unfair comparisons

we use the optimized compiled version with pure MPI tasks.

In Fig. 9 we compare the results in terms of operator

complexities and the number of iterations. The information

regarding the LAMBDA MATCHING is in the leftmost and

central panels. On the left, we have the cases in which we

scale with pure MPI tasks, on the central the ones in which

we scale by using threads.

To complete this analysis we turn again to weak-scaling
setting. We use up to 𝑁 = 16 nodes of Marconi-100 with
two MPI tasks per node. Leveraging the results obtained on

a single node, we employ for the LAMBDA MATCHING 16

threads per MPI task corresponding to the processor layout of

the machine. The load per MPI task is set to have around 512k

dofs. We test again all the discussed strategies and use them

as measures of the building times for the multigrid hierarchies,

the solve times, the time per iteration, and the number of

iterations. To avoid cluttering the plots, we restrict ourselves

to the cases of 𝜆 = 0, and 𝜆 = 1.56 that were delivering the
two best results in the central panels of Figure 9. All the

results are given in Fig. 10. We observe a better solve time of

our LAMBDA MATCHING with respect to the Hypre HMIS1

algorithm having operator complexity which is comparable

with our AMG hierarchies, and a marked improvement with

respect to VBM and Parmatch. In the face of a very high

2“The core PETSc team has come to the consensus that pure MPI using
neighborhood collectives and the judicious using of MPI shared memory
(for data structures that you may not wish to have duplicated on each MPI
process due to memory constraints) will provide the best performance for
HPC simulation needs on current generation systems, next-generation systems
and exascale systems.”; see https://petsc.org/release/miscellaneous/threads/

65

Authorized licensed use limited to: Purdue University. Downloaded on March 10,2024 at 15:28:54 UTC from IEEE Xplore. Restrictions apply.

1 2 4 8 16 32
np

0

0.22

0.44

0.67

0.89

1.11

1.33

1.56

1.78

2

Operator Complexity - -Matching

1.333

1.325

1.336

1.321

1.321

1.32

1.32

1.322

1.305

1.321

1.33

1.313

1.303

1.322

1.323

1.321

1.321

1.326

1.358

1.321

1.331

1.31

1.314

1.323

1.324

1.321

1.322

1.328

1.322

1.328

1.309

1.321

1.322

1.324

1.322

1.322

1.328

1.322

1.338

1.307

1.321

1.322

1.325

1.322

1.322

1.329

1.322

1.335

1.309

1.321

1.323

1.326

1.321

1.321

1.334

1.321

1.375 1.381 1.386 1.388

1.31

1.32

1.33

1.34

1.35

1.36

1.37

1.38

1 2 4 8 16 32
Thread

0

0.22

0.44

0.67

0.89

1.11

1.33

1.56

1.78

2

Operator Complexity - -Matching

1.325

1.321

1.321

1.32

1.32

1.322

1.305

1.321

1.326

1.323

1.323

1.322

1.322

1.327

1.305

1.322

1.327

1.324

1.324

1.323

1.323

1.327

1.306

1.323

1.328

1.325

1.325

1.323

1.323

1.316

1.324

1.296

1.325

1.325

1.324

1.324

1.317

1.324

1.328

1.325

1.325

1.324

1.324

1.326

1.308

1.324

1.333

1.336

1.334

1.338

1.334

1.339

1.335

1.331

1.33

1.329

1.331

1.33

1.336

1.34

1.3

1.305

1.31

1.315

1.32

1.325

1.33

1.335

1.34

1 2 4 8 16 32
np

Parmatch

VBM

HMIS1

Falgout

ML

Operator Complexity

1.348

1.132

0

0

1.29

1.345

1.13

1.288

1.346

1.129

1.277

1.352

1.13

1.281

1.348

1.13

1.278

2.58 2.588 2.624 2.638 2.653

0

0.5

1

1.5

2

2.5

NaN

1 2 4 8 16 32
np

0

0.22

0.44

0.67

0.89

1.11

1.33

1.56

1.78

2

Iteration - -Matching

60

63

58

55

53

59

58

64

54

60

70

66

56

58

57

63

64

69

69

65

72

71

64

66

65

71

72

74

81

73

83

79

79

78

78

84

85

85

99

86

104

99

100

101

102

107

107

98

126

108

135

130

132

134

132

134

141

143

165

142 60

70

80

90

100

110

120

130

140

150

160

1 2 4 8 16 32
Thread

0

0.22

0.44

0.67

0.89

1.11

1.33

1.56

1.78

2

Iteration - -Matching

60

63

58

55

53

59

58

64

54

60

65

68

68

61

59

67

67

71

63

66

71

74

74

69

69

73

73

74

71

75

79

86

87

83

81

88

86

87

83

87

93

102

108

106

106

110

110

101

106

110

93

130

144

136

140

149

147

130

127

147
60

70

80

90

100

110

120

130

140

1 2 4 8 16 32
np

Parmatch

VBM

HMIS1

Falgout

ML

Iteration

77 76

29

7

30

36

7

33

42

7

45

51

7

48

58

7

58

94 90

81

103

83

96

88

102

91

105

10

20

30

40

50

60

70

80

90

100

NaN

Fig. 9: 2D rotated anisotropy with 𝜃 = 18◦ and 𝜀 = 100. Comparisons of the operator complexities (top panels), and of the number
of iterations (bottom panels). The sequential runs with the algorithms from PETSc hang indefinitely, and we have terminated

them. The operator complexities for ML are not computed by the interface. Size of the aggregates for LAMBDA MATCHING

and Parmatch is 8.

2 4 8 16 32
0
2
4
6
8

10

np

(a) Build time (𝑠).

2 4 8 16 32
0

10

20

np

(b) Solve time (𝑠).

2 4 8 16 32

50

100

150

np

(c) Iteration number.

24 8 16 32
0.6

0.8

1

np

E
ffi
ci
en
cy

(d) Time per iteration (Efficiency)

2 4 8 16 32
0.02

0.1

0.15

0.2

np

𝜆-match 𝜆 = 0
𝜆-match 𝜆 = 1.56
Parmatch

VBM

Hypre Falgout

Hypre HMIS1

Trilinos ML

(e) Time per iteration (𝑠).

Fig. 10: Weak scaling - 512k dofs per MPI task. Rotated anisotropy with 𝜃 = 18◦, 𝜀 = 100. We use up to 𝑁 = 16 nodes of Marconi-
100, with 𝑛𝑝 = 2 MPI tasks per node, and 16 OpenMP threads per task for the multigrid based on the LAMBDA MATCHING
algorithm. The efficiency for the case of the algorithms from Hypre and from Trilinos is computed with the baseline time per

iteration the run on two processes, since the run on a single process does not terminate its execution.

66

Authorized licensed use limited to: Purdue University. Downloaded on March 10,2024 at 15:28:54 UTC from IEEE Xplore. Restrictions apply.

construction cost Hypre Falgout has the best solve time and

iteration count.

VI. CONCLUSIONS

In this paper we discussed some preliminary results on using

a new matching algorithm in the setup of an AMG precondi-

tioner for sparse linear solver. This new matching algorithm

is an approximation strategy balancing maximum weight and

maximum cardinality, its principal aim is to accelerate the

coarsening procedure, i.e., decreasing the operator complexity

of the AMG hierarchy, while retaining a good iteration count in

the solve phase. The new matching algorithm is implemented

by exploiting a shared memory programming model based on

OpenMP. It was integrated in the MPI-based library for AMG

preconditioners inside a decoupled aggregation scheme for

coarsening. This reduces accuracy in the approximate matching

on the overall sparse matrix while allowing the exploitation of a

hybrid programming model aimed to obtain high-performance

both at the node level and in the distributed setting. We plan to

use this hybrid implementation of the AMG setup to enhance

the current CUDA-enabled version of the library so that on

the one hand we run the solve phase on the available CUDA-

enabled devices of each node; on the other hand, we equally

distribute the work in building the AMG hierarchy among the

cores on the nodes on CUDA-enabled devices.

ACKNOWLEDGMENT

The research is supported by the EU Horizon 2020 Project,

Towards EXtreme scale Technologies and Accelerators for

euROhpc hw/Sw Supercomputing Applications for exascale

(TEXTAROSSA, ID 956831), as part of the EuroHPC initiative;

the U.S. DOE Exascale Computing Project’s (ECP) (17-SC-

20-SC) ExaGraph codesign center and Laboratory Directed

Research and Development Program at Pacific Northwest

National Laboratory (PNNL); and DOE grant DE-SC-0022260

at Purdue. S M Ferdous is grateful for the support of the Linus

Pauling Distinguished Postdoctoral Fellowship program. We

also thank the anonymous reviewers for detailed comments

and suggestions to improve the manuscript.

REFERENCES

[1] Y. Saad, Iterative Methods for Sparse Linear Systems. Boston: PWS
Publishing Company, 1996. [Online]. Available: http://www-users.cs.
umn.edu/∼saad/books.html

[2] P. D’Ambra and P. S. Vassilevski, “Adaptive AMG with coarsening
based on compatible weighted matching,” Comput. Vis. Sci.,
vol. 16, no. 2, pp. 59–76, 2013. [Online]. Available: https:
//doi.org/10.1007/s00791-014-0224-9

[3] P. D’Ambra, S. Filippone, and P. S. Vassilevski, “BootCMatch: a
software package for bootstrap AMG based on graph weighted matching,”
ACM Trans. Math. Software, vol. 44, no. 4, pp. Art. 39, 25, 2018.
[Online]. Available: https://doi.org/10.1145/3190647

[4] M. Bernaschi, P. D’Ambra, and D. Pasquini, “AMG based on compatible
weighted matching for GPUs,” Parallel Comput., vol. 92, pp. 102 599, 13,
2020. [Online]. Available: https://doi.org/10.1016/j.parco.2019.102599

[5] P. D’Ambra, F. Durastante, and S. Filippone, “AMG preconditioners
for linear solvers towards extreme scale,” SIAM J. Sci. Comput.,
vol. 43, no. 5, pp. S679–S703, 2021. [Online]. Available: https:
//doi.org/10.1137/20M134914X

[6] U. V. Catalyürek, F. Dobrian, A. Gebremedhin, M. Halappanavar, and
A. Pothen, “Distributed-memory parallel algorithms for matching and
coloring,” in 2011 IEEE International Symposium on Parallel and
Distributed Processing Workshops and Phd Forum, 2011, pp. 1971–1980.

[7] F. Manne and M. Halappanavar, “New Effective Multithreaded Matching
Algorithms,” in 2014 IEEE 28th International Parallel and Distributed
Processing Symposium, 2014, pp. 519–528.

[8] A. Brandt, “General highly accurate algebraic coarsening,” in Electron.
Trans. Numer. Anal. Multilevel methods (Copper Mountain, CO, 1999),
2000, vol. 10, pp. 1–20.

[9] A. Pothen, S. M. Ferdous, and F. Manne, “Approximation algorithms in
combinatorial scientific computing,” Acta Numerica, vol. 28, pp. 541–633,
2019. [Online]. Available: https://doi.org/10.1017/s0962492919000035

[10] P. D’Ambra, F. Durastante, and S. Filippone, “Parallel Sparse
Computation Toolkit,” Software Impacts, vol. 15, p. 100463, 2023.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S2665963822001476

[11] S. Pettie and P. Sanders, “A simpler linear time 2/3 − 𝜖
approximation for maximum weight matching,” Inform. Process.
Lett., vol. 91, no. 6, pp. 271–276, 2004. [Online]. Available:
https://doi.org/10.1016/j.ipl.2004.05.007

[12] J. Maue and P. Sanders, “Engineering algorithms for approximate
weighted matching,” in WEA, vol. 7. Springer, 2007, pp. 242–255.

[13] A. Berge, “A parallel version of the Random Order Augmentation
Matching Algorithm,” Master’s thesis, University of Bergen, 2020.

[14] A. H. Baker, R. D. Falgout, T. V. Kolev, and U. M. Yang,
“Multigrid smoothers for ultraparallel computing,” SIAM J. Sci.
Comput., vol. 33, no. 5, pp. 2864–2887, 2011. [Online]. Available:
https://doi.org/10.1137/100798806

[15] P. Vaněk, J. Mandel, and M. Brezina, “Algebraic multigrid by
smoothed aggregation for second and fourth order elliptic problems,”
in Computing. International GAMM-Workshop on Multi-level Methods
(Meisdorf, 1994), 1996, vol. 56, no. 3, pp. 179–196. [Online]. Available:
https://doi.org/10.1007/BF02238511

67

Authorized licensed use limited to: Purdue University. Downloaded on March 10,2024 at 15:28:54 UTC from IEEE Xplore. Restrictions apply.

